## Code No.: 12423 N/O

## VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

## B.E. (E.C.E.) II-Semester Main & Backlog Examinations, August-2023 **Basic Circuit Analysis**

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A  $(10 \times 2 = 20 \text{ Marks})$ 

| Q. No. | Stem of the question                                                                                                                     | M | L | СО | PO  | PSO |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|-----|-----|
| 1.     | Define an ideal current and voltage sources. Draw corresponding characteristics.                                                         | 2 | 1 | 1  | 1   | 1   |
| 2.     | State Kirchhoff's voltage and current laws.                                                                                              | 2 | 1 | 1  | 1   | 1   |
| 3.     | State and explain maximum power transfer theorem.                                                                                        | 2 | 1 | 2  | 1   |     |
| 4.     | State and explain reciprocity theorem.                                                                                                   | 2 | 1 | 2  | 1   | 1   |
| 5.     | Obtain $Z_{11}$ in terms of h parameters.                                                                                                |   | 1 |    | 1   | 1   |
| 6.     |                                                                                                                                          | 2 | 1 | 3  | 2   | 1   |
|        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                    | 2 | 2 | 3  | 2   | 1   |
|        |                                                                                                                                          |   |   |    |     |     |
| 7.     | Find $z_{11}$ of the network shown.<br>Find the value of L and R for the circuit shown in figure below where $v = 100$ V and $i = 25$ A. | 2 | 2 | 4  | 2   | 1   |
| •      | $R \lessapprox L \supsetneqq^+_{\nu}$                                                                                                    |   |   |    |     |     |
| 8.     | Explain the difference between transient and steady state response using an RC circuit.                                                  | 2 | 1 | 4  | 1   | 1   |
| 9.     | Explain any four classifications of passive filters with their characteristics.                                                          | 2 | 1 | 5  | 1,2 | 1   |
|        | Define selectivity in the context of RLC resonant circuit.                                                                               |   | 1 | 5  |     | 1   |
|        | Part-B $(5 \times 8 = 40 \text{ Marks})$                                                                                                 | 2 |   | 5  | 1   | 1   |
| 1. a)  | Explain mesh analysis notwork reduction to 1                                                                                             | 1 | , |    | 1.0 |     |
|        | to any given network.                                                                                                                    | 4 | 2 | 1  | 1,2 | 1   |

Code No.: 12423 N/O

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) | 10 n V <sub>1</sub> 30 n V <sub>2</sub>                                                                                                                                                            | 4 | 2 | 1 | 2   | 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|-----|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                             |   |   |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                                                                                                                                                                                    |   |   |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Calculate the current through 10 ohms resistor using nodal analysis.                                                                                                                               |   |   |   |     |   |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a) | State super position theorem using an example.                                                                                                                                                     | 2 | 2 | 2 | 1   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) | Using superposition theorem, find the current across (2+j5) branch for the circuit shown below:                                                                                                    | 6 | 2 | 2 | 3   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | $j4\Omega$ $j3\Omega$ $2\Omega$                                                                                                                                                                    |   |   |   |     |   |
| in the second se |    | 50<0° ν (S) 20<30° A                                                                                                                                                                               |   |   |   |     |   |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a) | Explain ABCD parameters. Derive the relation between Z parameters and ABCD parameters                                                                                                              | 4 | 2 | 3 | 1,2 | 1 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) | Calculate the $y_{11}$ and $y_{22}$ for the given circuit.                                                                                                                                         | 4 | 3 | 3 | 2   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                               |   |   |   |     |   |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a) | Derive the transient response of a series RC circuit to a step input.                                                                                                                              | 4 | 3 | 4 | 1,2 | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) | SX 30ss                                                                                                                                                                                            | 4 | 3 | 4 | 3   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 100v [ 4 ] \$ 1502) (2 } 0.5H                                                                                                                                                                      |   |   |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Determine the current equation of i <sub>1</sub> when the switch is closed at t=0.                                                                                                                 |   |   |   |     |   |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a) | Compare series and parallel resonant circuits with respect to resonant frequency and Q-factor.                                                                                                     | 4 | 2 | 5 | 1   | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) | A series RLC circuit consists of a 100 ohms resistance, 0.2H inductance, 5uF capacitance with an applied voltage of 10 V. Determine the resonant frequency, Q factor and bandwidth of the circuit. | 4 | 3 | 5 | 2   | 1 |

Code No.: 12423 N/O



M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

| i)   | Blooms Taxonomy Level – 1     | 20% |
|------|-------------------------------|-----|
| ii)  | Blooms Taxonomy Level – 2     | 40% |
| iii) | Blooms Taxonomy Level – 3 & 4 | -   |
|      | 3                             | 40% |